Large-scale Simple Question Generation by Template-based Seq2seq Learning

Authors: Tianyu Liu, Bingzhen Wei, Baobao Chang and Zhifang Sui

Organization: Key Laboratory of Computational Linguistics(ICL), Peking University

Speaker: Tianyu Liu

E-mail: tianyu0421@pku.edu.cn

- Background
 - Graph knowledge base
 - Simple question
- KB-based question generation
 - Template Extraction
 - Template-based Seq2seq model
 - Case study
- Dataset & metrics
- Experiments
- Large-scale Chinese KBQA dataset
 - Triple Selection and Question Filtering
 - Dataset Analysis
- Future Work

Knowledge Base

- Triples of subj-pred-obj (h, r, t)
- Knowledge graph
 - Each entity is a node
 - Two related entities linked by a directed edge (predicate)

Simple questions vs. Compositional questions

Simple question 姚明身高多少? How tall is Ming Yao? 姚明 ^{height} 226cm

Compositional question 姚明妻子身高多少? How tall is Ming Yao's wife? 姚明^{marriage} 叶莉^{height} 190cm

- Background
 - Graph knowledge base
 - Simple question
- KB-based question generation
 - Template Extraction
 - Template-based Seq2seq model
 - Case study
- Dataset & metrics
- Experiments
- Large-scale Chinese KBQA dataset
 - Triple Selection and Question Filtering
 - Dataset Analysis
- Future Work

Pure Template Extraction model

Template Collection

For a specific relationship r

- 1. Extract templates by replacing topic entity with a special token (SUB) in each question.
- 2. Collect all the templates concerning *r* to form a template pool.

Selective Generation

Given a factual triple <h, r, t>

- 1. Randomly select a template from r' s template pool.
- 2. Generate questions by replacing the special token (SUB) in the selected pattern.

Template-based seq2seq model

Triple Encoder

Given a triple fact $F = \langle t, p, o \rangle$

- Topic entity $t = \{t_1, t_2, \dots, t_n\}$
- Relation predicate $p = \{p_1, p_2, \dots p_m\}$
- Object entity $o = \{o_1, o_2, \dots o_l\}$
- \triangleright Input: $w = [t_1, t_2, \cdots, t_n, SEP, p_1, p_2, \cdots p_m] \in \mathbb{R}^{m+n+1}$
- \triangleright Encoder state: $h_t = LSTM(h_{t-1}, w_{t-1})$

```
Given Triple: 于海 ||| 相关人物 ||| 吴冠中、张建中、爱新觉罗•溥铮 Generated Question: 请问与于海有关的人有谁?
```


Template-based seq2seq model

Template Decoder

Given encoder states $H = \{h_t\}_{t=1}^L$ and previous generated tokens $y_{< t}$

Probability of Generating next token

$$P(y_t|H, y_{< t}) = softmax(W_s \cdot tanh(W_t[s_t, a_t]))$$

Decode states

$$s_t = LSTM(s_{t-1}, y_{t-1})$$

Attention vector

$$a_t = \sum_{i=1}^{L} \alpha_{ti} h_i$$

$$\alpha_{ti} = \frac{e^{g(s_t, h_i)}}{\sum_{i=1}^{N} g(s_t, h_i)} \qquad g(s_t, h_i) = \tanh(W_p h_i) \cdot \tanh(W_q s_t)$$

Given Triple: **丁海** ||| 相关人物 ||| 吴冠中、张建中、爱新觉罗•溥铮 Generated Question: 请问与**丁海**有关的人有谁?

Case Study

Fact #1	全球通史 装帧 软装
Fact #2	商务星健身管理软件 经营范围 健身俱乐部管理软件
Fact #3	倭叉角羚 纲 哺乳纲
Fact #4	焖子 主要食材 地瓜淀粉 精瘦肉
Fact #5	真相 译者 陈睿 杨通

Fact	Gold	Pure Template	Seq2seq	Tseq2seq
#1	全球通史的装帧是什么样子的?	全球通史这本书共多 少页?	全球通史的装帧是什么?	全球通史是怎样装帧的?
#2	商务星健身管理软件 的经营范围是什么?	商务星健身管理软件 主要做什么生意?	商务星健身管理软件 的经营范围是什么?	商务星健身管理软件 经营范围包括哪些?
#3	你知道倭叉角羚这种 动物是什么纲的吗?	谁能告诉我倭叉角羚 属于什么纲?	谁知道 偃叉角羚 是哪 个纲的?	倭叉角羚属于什么纲?
#4	我想知道做焖子都需 要什么食材?	焖子主要食材有什么?	仗子 的主要食材是什么?	做焖子需要用什么材 料?
#5	我想知道真相这本书 是谁翻译的呀?	谁翻译了真相?	真相的译者是谁?	请问真相是谁翻译的?

- Misleading questions generated by pure template-based method are marked in red.
- Questions that generates wrong subjects entities of the corresponding facts are marked in green

- Background
 - Graph knowledge base
 - Simple question
- KB-based question generation
 - Template Extraction
 - Template-based Seq2seq model
 - Case study
- Dataset & metrics
- Experiments
- Large-scale Chinese KBQA dataset
 - Triple Selection and Question Filtering
 - Dataset Analysis
- Future Work

➤ Knowledge base: Chinese KB from NLPCC2017 KBQA challenge

	$\mathbf{FB2M}$	$\mathbf{FB5M}$	NLPCC2017
Entities	2,150,604	4,904,397	6,502,738
Relationships	6,701	7,523	$548,\!225$
Facts	$14,\!180,\!937$	22,441,880	43,063,796

Statistics of the NLPCC2017 Chinese Knowledge Base

➤ Train & Test dataset: Training & Testing set from NLPCC2016 KBQA challenge (Train/dev/test: 11687/2922/9870)

Question	有人知道鸡黍之交的相关人物都有谁吗?
Factual Triple	鸡黍之交 相关人物 范式与张劭
Answer	范式与张劭

- ➤ Automatic evaluation: Bleu-4 and Rouge-4
- > Human evaluation:
 - 1) Randomly select 100 generated questions.
 - 2) ask 2 experts to evaluate whether the question is understandable and answerable (good question or not).
 - 3) Use the ratio of good questions in the selected 100 questions as human evaluation score

➤ Diversity evaluation: measure the diversity of generated questions with the same relationship (Question Cluster)

书名

你知道(SUB)的名字吗?

(SUB)的名字是什么?

(SUB)是什么?

知道(SUB)叫什么名字吗?

相关人物

(SUB)的相关人物都有谁?

你知道(SUB)与谁相关么?

有人知道(SUB)的相关人物吗?

(SUB)的相关人物是什么?

A set of question clusters

节目时长

(SUB)这个节目一般多长时间?

(SUB)的时长是多少?

(SUB)有多长?

(SUB)这个节目有多长时间?

➤ Diversity evaluation: DIVERSE

For a question cluster $Q_c = \{q_1, q_2, \dots, q_n\}$ and Corresponding triple cluster $F_c = \{[t_1, t_2, \dots, t_n], R, [o_1, o_2, \dots, o_n]\}$

$$DIVERSE = \frac{1}{C_n^2} \sum_{i=1}^n \sum_{j=1}^n 1(i \neq j) Tfidf_{sim}(q_i, q_j)$$

the smaller DIVERSE is, the more linguistically diverse the generated questions are.

- Background
 - Graph knowledge base
 - Simple question
- KB-based question generation
 - Template Extraction
 - Template-based Seq2seq model
 - Case study
- Dataset & metrics
- Experiments
- Large-scale Chinese KBQA dataset
 - Triple Selection and Question Filtering
 - Dataset Analysis
- Future Work

Experiment results

> Automatic & human evaluation

Models	ROUGE	\mathbf{BLEU}	Human
Template-based Baseline	37.84	76.33	87.0
Seq2seq	38.41	74.86	83.5
Template-based Seq2seq	43.11	76.84	92.5

Automatic and human evaluation performance of proposed models.

➤ Diversity evaluation

Models	N = [3,4]	$N=[5,\sim]$	Aggregate
Template-based Baseline	12.30	9.33	11.97
Seq2seq	10.35	7.23	9.74
Template-based seq2seq	4.98	3.63	4.65

Diversity evaluation of proposed models.

N equals the number of facts inside each cluster

- Background
 - Graph knowledge base
 - Simple question
- KB-based question generation
 - Template Extraction
 - Template-based Seq2seq model
 - Case study
- Dataset & metrics
- Experiments
- Large-scale Chinese KBQA dataset
 - Triple Selection and Question Filtering
 - Dataset Analysis
- Future Work

Triple selection and question filtering

Triple selection for given triple < h, r, t >

1. remove entity description from head entity

万家灯火(林兆华李六乙导演话剧)

2. choose head entities which have more than 5 relationship connections (to ensure the quality of questions)

Head entity with 6 relationship connections

水冷机箱 ||| 别名 ||| 水冷机箱

水冷机箱 ||| 中文名 ||| 水冷机箱

水冷机箱 ||| 缺点 ||| 普遍体积过大, 操作不够简单

水冷机箱 ||| 类型 ||| 电脑内部发热部件散热的一种装置

水冷机箱 || 功能 ||| 它包括水冷散热系统和防尘机箱

水冷机箱 ||| 英文名 ||| Water-cooled chassis

Head entity with 4 relationship connections 与幸福背道而驰 ||| 别名 ||| 与幸福背道而驰 与幸福背道而驰 ||| 中文名 ||| 与幸福背道而驰 与幸福背道而驰 ||| 作者 ||| 口虚 与幸福背道而驰 ||| 小说进度 ||| 连载

Triple selection and question filtering

- Question filtering
 - 1. Filter out questions with *UNK* token.
 - 2. Filter out questions with 2-gram or more repetition. 谁知道知道再造幽冥进度怎么样了?
 - 3. Filter out questions whose length are longer than 50.

Dataset Analysis - quantitative analysis

> Statistics of proposed dataset

	SimpleQuestion	Proposed corpus
Entities	131,684	5,997,954
Relationships	1,837	4,222
Questions	108,442	28,133,837

Dataset Analysis - quality analysis

➤ Performance of different models on the proposed dataset we randomly select 21065 instances (question-answer pairs) from the proposed dataset and test the performance of three competitive models on the selected dataset.

Model	Dataset	Precision(%)	Recall(%)	F1(%)
(Lai et al.) KBQA Challenge winner	2016test	86.60	86.60	86.60
	2017test	47.23	47.23	47.23
	Our	89.07	89.07	89.07
System 1 In the challenge	2016test	76.55	76.55	76.55
	2017test	36.51	36.51	36.51
	Our	78.25	78.25	78.25
System 2	2016test	74.38	74.38	74.38
In the challenge	2017test	31.46	31.46	31.46
	Our	75.21	75.21	75.21

Dataset Analysis - quality analysis

	2016 testing set		201	2017 testing set		
	Pre@1	Pre@2	Pre@5	Pre@1	Pre@2	Pre@5
baseline[19]	82.41%	87.06%	89.84%			
s_f only	82.97%	87.50%	90.36%	42.94%	48.67%	54.75%
CNN Single	84.55%	88.63%	91.03%	43.63%	49.98%	55.59%
CNN Ensemble	85.40%	89.01%	91.17%	44.31%	50.18%	56.05%
$name_system(Full$) 86.60%	89.67%	91.38%	47.35%	52.47%	56.74%

	Pre@1	Pre@2	Pre@5
Our	89.77	90.15	90.45

Future work

- Compositional Question Generation based on relational path Given a relational path e.g. name->marriage->height. Generating compositional questions like 'how tall is <name>' s wife/husband?'
- Question Generation based on machine comprehension Given an article or several paragraphs. Try to generate meaningful questions according to the context.

Learning to Ask: Neural Question Generation for Reading Comprehension Du et al. Identifying Where to Focus in Reading Comprehension for Neural Question Generation Du et al.

Thanks for your listening!

